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Abstract  
In this search, we assume the singular initial value problems of order (n+2). We give the two 

new operator for studying this problems and we give illustrations this method by some 

examples, the linear and nonlinear examples prove that the presented method is reliable, 

efficient, easy to implement. 
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1. Introduction 

Assume the singular initial value problem of  (𝑛 + 2) order as: 

𝑦(𝑛+2) +  
𝑚

𝑥
𝑦(𝑛+1) = 𝑔(𝑥) + 𝑓(𝑥, 𝑦)   ,   𝑛 ≥ 1 ,   𝑚 > 0                                                 (1) 

𝑦(0) = 𝑦′(0) = 𝑦′′(0) = ⋯ = 𝑦(𝑛+1)(0) = 0 

Where 𝑔(𝑥) 𝑎𝑛𝑑 𝑓(𝑥, 𝑦) is a real functions. 

the singular initial value problems of ordinary differential equations which called Emden-

fowler equations[5-8,12,13] assumed by many mathematicians and physicists, The well-known 

Emden-fowler equations have been used to model several phenomena in mathematical physics 

Adomian's decomposition method [1-3] presented by George Adomian, it is   powerful and 

reliable method for solving various kinds of problems arising in applied sciences,,  The method 

gives approximate solutions which converge rapidly to accurate solutions. Some modifications 

on the ADM was introduced by numerous different creators [4,6-9,12,13]. 

 

In this paper we introduce a new reliable modification of ADM a two new differential operator 

is defined which can be used for higher order singular initial value problems, the first for odd 

order (2n+1) and the second for even order (2(n+1)). Some numerical examples, with specified 

initial conditions will be examined to handle the singular point that exist in each equation. 

 

2. Adomian Decomposition strategy (The First Adjusted) 

The first differential operator L is defined by: 

𝐿(. ) = 𝑥−𝑚
𝑑

𝑑𝑥
𝑥𝑚−𝑛

𝑑𝑛

𝑑𝑥𝑛
𝑥2𝑛

𝑑𝑛

𝑑𝑥𝑛
𝑥−𝑛(. )                                                                            (2) 

Which gives the left side of differential equation as: 
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𝑦(2𝑛+1) +  
𝑚

𝑥
𝑦(2𝑛) = 𝑔(𝑥) + 𝑓(𝑥, 𝑦)  ,   𝑛 ≥ 1 ,   𝑚 > 0                                                   (3) 

𝑦(0) = 𝑦′(0) = 𝑦′′(0) =  … = 𝑦(2𝑛)(0) = 0 

Where 𝑔(𝑥) and 𝑓(𝑥, 𝑦) is a real functions. 

We rewrite (3) in the form 

𝐿𝑦 = 𝑔(𝑥) + 𝑓(𝑥, 𝑦)                                                                                                                   (4) 

The inverse operator L−1 is defined, as below 

𝐿−1(. ) = 𝑥𝑛 ∫ … ∫ 𝑥−2𝑛 ∫ … ∫ 𝑥𝑛−𝑚 
𝑥

0

𝑥

0

𝑥

0

𝑥

0

∫ 𝑥𝑚
𝑥

0

(. )𝑑𝑥 … 𝑑𝑥                                         (5) 

Applying 𝐿−1 on (4) we find 

𝐿−1(𝐿𝑦) = 𝐿−1(𝑔(𝑥)) + 𝐿−1(𝑓(𝑥, 𝑦)) 

𝑦(𝑥) = 𝐿−1(𝑔(𝑥)) + 𝐿−1(𝑓(𝑥, 𝑦))                                                                                           (6) 
 

The Adomian decomposition method introduces the solution y(x) by an infinite series of 

components 

𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)

∞

𝑛=0

                                                                                                                         (7) 

and 

𝑓(𝑥, 𝑦) = ∑ 𝐴𝑛 

∞

𝑛=0

                                                                                                                          (8) 

Where the components 𝑦𝑛(𝑥) of the solution will be determined recurrently. Specific 

algorithms were seen in [10-11] formulate Adomian polynomials. The following algorithm: 

 𝐴0 = 𝑓(𝑢0) 

 𝐴1 = 𝑓′(𝑢0)𝑢1 

𝐴2 = 𝑓′(𝑢0)𝑢2 +
1

2
𝑓′′(𝑢0)𝑢1

2  

𝐴3 = 𝑓′(𝑢0)𝑢3 + 𝑓′(𝑢0)𝑢1𝑢2 +
1

3!
𝑓′′′(𝑢0)𝑢1

3,                                                                    (9) 

 

can be used to construct Adomian polynomials, when 𝑓(𝑢) is a nonlinear function. 

 By substituting (7) and (8) into (6), 

∑ 𝑦𝑛(𝑥)

∞

𝑛=0

= 𝐿−1(𝑔(𝑥)) + 𝐿−1 ∑ 𝐴𝑛

∞

𝑛=0

                                                                                   (10) 

 

Through using Adomian decomposition method, the components  𝑦𝑛(𝑥) can be determined as 

𝑦0 = 𝐿−1(𝑔(𝑥)) 

𝑦𝑛+1(𝑥) = 𝐿−1𝐴𝑛   𝑛 ≥  0,                                                                                                        (11) 
Which gives 

  𝑦0 = 𝐿−1(𝑔(𝑥)), 
  𝑦1 = 𝐿−1𝐴0 , 
  𝑦2 = 𝐿−1𝐴1 , 
  𝑦3 = 𝐿−1𝐴2 ,                                                                                                                               (12) 

 

From (8) and (11), we can determine the components 𝑦𝑛(𝑥), and hence the series solution of  

𝑦(𝑥) in (7) can be immediately obtained. 

 

 



International Journal of Applied Science and Mathematical Theory ISSN 2489-009X Vol. 4 No. 3 2018 

www.iiardpub.org 

  

 

IIARD – International Institute of Academic Research and Development 
 

Page 3 

3. Illustrative Examples 

Example 1. We assume the non-linear initial value problem: 

𝑦′′′ +
1

𝑥
𝑦′′ = 12 + 𝑥6 − 𝑦2,                                                                                                    (13) 

𝑦(0) = 0  ,   𝑦′(0) = 0 , 𝑦′′(0) = 0. 
with exact solution = 𝑥3. 
Eq.(13) can be written as 

𝐿𝑦 = 12 + 𝑥6 − 𝑦2,                                                                                                                   (14) 
Where differential operator  

𝐿(. ) = 𝑥−1
𝑑2

𝑑𝑥2
𝑥2

𝑑

𝑑𝑥
𝑥−1(. ), 

    And inverse operator  

𝐿−1(. ) = 𝑥1 ∫ 𝑥−2
𝑥

0

∫ ∫ 𝑥
𝑥

0

𝑥

0

(. )𝑑𝑥𝑑𝑥𝑑𝑥. 

on both sides of (14), and using the initial conditions at x = 0, yields 

𝑦(𝑥) = 𝐿−1(12 + 𝑥6) − 𝐿−1(𝑦2),                                                                                          (15) 

Substituting the decomposition series  yn(x)  for y(x) into (15) gives 

∑ 𝑦𝑛(𝑥)

∞

𝑛=0

= 𝐿−1(12 + 𝑥6) − 𝐿−1(𝑦2),                                                                                 (16) 

𝑦0 = 𝐿−1(12 + 𝑥6), 

𝑦𝑛+1 = −𝐿−1(𝐴𝑛) , 𝑛 ≥ 0.                                                                                               (17) 

𝐴0 = 𝑦0
2 , 

𝐴1 = 2𝑦0𝑦1, 
𝐴2 = 𝑦1

2 + 2𝑦0𝑦2  ,                                                                                                                    (18) 
… 

Using (18), the first several calculated solution components are 

𝑦0 = 𝑥3 +
1

576
𝑥9  , 

𝑦1 = −𝐿−1(𝑦0
2) = −

1

576
𝑥9 −

1

846720
𝑥15 −

1

2786918400
𝑥21, 

𝑦2 = −𝐿−1(2𝑦0𝑦1) =
1

846720
𝑥15 +

341

341397504000
𝑥21 +

47

178033921228800
𝑥27 

                                    +
1

54245114825932800
𝑥33 , 

𝑦3 = −𝐿−1(𝑦1
2 + 2𝑦0𝑦2) = −

437

682795008000
𝑥21 − ⋯  

We note that: 
1

576
𝑥9 −

1

576
𝑥9 = 0 

−
1

846720
𝑥15 +

1

846720
𝑥15 = 0 

−
1

2786918400
𝑥21 +

341

341397504000
𝑥21 −

437

682795008000
𝑥21 = 0 

Other components can be evaluated in a similar manner. Which gives the exact solution 

𝑦(𝑥) =  𝑥3                                                                                                                                   (19) 
 

Example 2. We assume the non-linear initial value problem: 

𝑦′′′ +
2

𝑥
𝑦′′ + (18 + 36𝑥3)𝑒−3𝑦 = 0                                                                                    (20) 



International Journal of Applied Science and Mathematical Theory ISSN 2489-009X Vol. 4 No. 3 2018 

www.iiardpub.org 

  

 

IIARD – International Institute of Academic Research and Development 
 

Page 4 

𝑦(0) = 0  ,   𝑦′(0) = 0 , 𝑦′′(0) = 0 
 

with exact solution =  𝑙𝑛(1 − 𝑥3) 

Eq.(20) can be written as 

𝐿𝑦 = −(18 + 36𝑥3)𝑒−3𝑦                                                                                                        (21) 
Where differential operator    

𝐿(. ) = 𝑥−2
𝑑

𝑑𝑥
𝑥

𝑑

𝑑𝑥
𝑥2

𝑑

𝑑𝑥
𝑥−1(. ) 

    And inverse operator 

𝐿−1(. ) = 𝑥 ∫ 𝑥−2 ∫ 𝑥−1
𝑥

0

𝑥

0

∫ 𝑥2
𝑥

0

(. )𝑑𝑥𝑑𝑥𝑑𝑥 

on both sides of (21), and using the initial conditions at x = 0, yields 

 

𝑦(𝑥) = 𝐿−1((−18 − 36𝑥3)𝑒−3𝑦)                                                                                          (22) 

Substituting the decomposition series  yn(x)  for y(x) into (22) gives 

∑ 𝑦𝑛(𝑥)

∞

𝑛=0

= 𝐿−1((−18 − 36𝑥3)𝑒−3𝑦) ,                                                                               (23) 

𝑦0 = 0 

𝑦𝑛+1 = 𝐿−1((−18 − 36𝑥3)𝐴𝑛), 𝑛 ≥ 0                                                                         (24) 

𝐴0 = 𝑒−3𝑦0  , 
𝐴1 = −3𝑒−3𝑦0𝑦1, 

𝐴2 = −3𝑒−3𝑦0𝑦2 +
9

2
𝑒−3𝑦0𝑦1

2 ,                                                                                              (25)  

… 

𝑦0 = 0 

𝑦1 = 𝑥3 +
1

28
𝑥6 +

1

165
𝑥9 

𝑦2 = −
15

28
𝑥6 −

3

70
𝑥9 −

523

56056
𝑥12  −

13

61600
𝑥15 −

1

62700
𝑥18 

𝑦3 = −
3

20
𝑥9 −

263

1760
𝑥12 −

5413

192500
𝑥15 −

27

18700
𝑥18 

𝑦(𝑥) = −𝑥3 −
1

2
𝑥6 −

1

3
𝑥9 −  …                                                                                            (26) 

That converges to the exact solution =  𝑙𝑛(1 − 𝑥3) by Taylor series. 

 

Example 3. We assume the linear initial value problem: 

𝑦(5) +
3

𝑥
𝑦(4) = 4 + 𝑥5 − 5! 𝑦 ,                                                                                               (27) 

𝑦(0) = 0  ,   𝑦′(0) = 0 , 𝑦′′(0) = 0   , 𝑦′′′(0) = 0  ,        𝑦(4)(0) = 0 . 

With exact solution = 
1

5!
𝑥5. 

Eq.(27) can be written as 

𝐿𝑦 = 4 + 𝑥5 − 5! 𝑦,                                                                                                                   (28) 
Where differential operator   

𝐿(. ) = 𝑥−3
𝑑

𝑑𝑥
𝑥

𝑑2

𝑑𝑥2
𝑥4

𝑑2

𝑑𝑥2
𝑥−2(. ), 

    And inverse operator  

𝐿−1(. ) = 𝑥2 ∫ ∫ 𝑥−4
𝑥

0

𝑥

0

∫ ∫ 𝑥−1
𝑥

0

𝑥

0

∫ 𝑥3
𝑥

0

(. )𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥. 
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On both sides of (28), and using the initial conditions at 𝑥 = 0, yields 

𝑦(𝑥) = 𝐿−1(4 + 𝑥5) − 𝐿−1(5! 𝑦).                                                                                          (29) 

Substituting the decomposition series  yn(x)  for  𝑦(𝑥) into (29) gives 

∑ 𝑦𝑛(𝑥)

∞

𝑛=0

= 𝐿−1(4 + 𝑥5) − 𝐿−1(5! 𝑦),                                                                                 (30) 

𝑦0 = 𝐿−1(4 + 𝑥5), 
𝑦𝑛+1 = −𝐿−1(5! 𝐴𝑛) , 𝑛 ≥ 0.                                                                                          (31) 
Using (31), the first several calculated solution components are 

𝑦0 =
1

120
𝑥5 +

1

45360
𝑥10, 

𝑦1 = −𝐿−1(5! 𝑦0) = −
1

45360
𝑥10 −

1

173365920
𝑥15, 

𝑦2 = −𝐿−1(5! 𝑦1) =
1

173365920
𝑥15 +

1

3191839953120
𝑥20, 

𝑦3 = −𝐿−1(5! 𝑦2) = −
1

3191839953120
𝑥20 −

1

193808521953446400
𝑥25, 

… 

Other components can be evaluated by same the manner. We note that the components appear 

with opposite signs from term to another. Canceling these terms together from series solution 

gives the exact solution 

𝑦(𝑥) =
1

5!
𝑥4.                                                                                                                              (32) 

 

4. Adomian Decomposition strategy (The Second Adjusted) 

The first differential operator L is defined by: 

𝐿(. ) = 𝑥−𝑚
𝑑

𝑑𝑥
𝑥𝑚−𝑛

𝑑𝑛+1

𝑑𝑥𝑛+1
𝑥2𝑛+1

𝑑𝑛

𝑑𝑥𝑛
𝑥−𝑛−1(. )                                                             (33) 

Which gives the left side of differential equation as: 

𝑦(2(𝑛+1)) + 
𝑚

𝑥
𝑦(2𝑛+1) = 𝑔(𝑥) + 𝑓(𝑥, 𝑦)       , 𝑛 ≥ 1 ,   𝑚 > 0                                       (34) 

𝑦(0) = 𝑦′(0) = 𝑦′′(0) = ⋯ = 𝑦(2𝑛+1)(0) = 0 

Where 𝑔(𝑥) and 𝑓(𝑥, 𝑦) is a real functions. 

We rewrite (34) in the form 

𝐿𝑦 = 𝑔(𝑥) + 𝑓(𝑥, 𝑦)                                                                                                                 (35) 

The inverse operator L−1 is defined, as below 

𝐿−1(. ) = 𝑥𝑛+1 ∫ … ∫ 𝑥−1−2𝑛 ∫ … ∫ 𝑥𝑛−𝑚
𝑥

0

𝑥

0

𝑥

0

𝑥

0

∫ 𝑥𝑚
𝑥

0

(. )𝑑𝑥 … 𝑑𝑥                               (36) 

Applying 𝐿−1 on (35) we find 

𝐿−1(𝐿𝑦) = 𝐿−1(𝑔(𝑥)) + 𝐿−1(𝑓(𝑥, 𝑦)) 

𝑦(𝑥) = 𝐿−1(𝑔(𝑥)) + 𝐿−1(𝑓(𝑥, 𝑦))                                                                                        (37) 
 

The Adomian decomposition method introduces the solution y(x) by an infinite series of 

components 

𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)

∞

𝑛=0

                                                                                                                      (38) 

and 
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𝑓(𝑥, 𝑦) = ∑ 𝐴𝑛 

∞

𝑛=0

                                                                                                                      (39) 

where the components 𝑦𝑛(𝑥) of the solution will be determined recurrently. Specific algorithms 

were seen in [10-11] formulate Adomian polynomials. The following algorithm: 

 𝐴0 = 𝑓(𝑢0) 

 𝐴1 = 𝑓′(𝑢0)𝑢1 

𝐴2 = 𝑓′(𝑢0)𝑢2 +
1

2
𝑓′′(𝑢0)𝑢1

2  

𝐴3 = 𝑓′(𝑢0)𝑢3 + 𝑓′(𝑢0)𝑢1𝑢2 +
1

3!
𝑓′′′(𝑢0)𝑢1

3,                                                                  (40) 

 

can be used to construct Adomian polynomials, when 𝑓(𝑢) is a nonlinear function. 

 By substituting (38) and (39) into (37), 

∑ 𝑦𝑛(𝑥)

∞

𝑛=0

= 𝐿−1(𝑔(𝑥)) + 𝐿−1 ∑ 𝐴𝑛

∞

𝑛=0

                                                                                  (41) 

 

Through using Adomian decomposition method, the components  𝑦𝑛(𝑥) can be determined as 

𝑦0 = 𝐿−1(𝑔(𝑥)) 

𝑦𝑛+1(𝑥) = 𝐿−1𝐴𝑛   𝑛 ≥  0,                                                                                                        (42) 
Which gives 

  𝑦0 = 𝐿−1(𝑔(𝑥)), 
  𝑦1 = 𝐿−1𝐴0 , 
  𝑦2 = 𝐿−1𝐴1 , 
  𝑦3 = 𝐿−1𝐴2 ,                                                                                                                               (43) 
 

From (40) and (43), we can determine the components 𝑦𝑛(𝑥), and hence the series solution of  

𝑦(𝑥) in (38) can be immediately obtained. 

 

5. Illustrative Examples 

Example 1. We assume the non-linear initial value problem: 

𝑦(4) +
2

𝑥
𝑦′′′ = 72 − 𝑥8 + 𝑦2,                                                                                                 (44) 

𝑦(0) = 0  ,   𝑦′(0) = 0 , 𝑦′′(0) = 0. 
the exact solution is  𝑦(𝑥) =  𝑥4. 
Eq.(44) can be written as 

𝐿𝑦 = 72 − 𝑥8 + 𝑦2,                                                                                                                  (45) 
Where differential operator   

𝐿(. ) = 𝑥−2
𝑑

𝑑𝑥
𝑥

𝑑2

𝑑𝑥2
𝑥3

𝑑

𝑑𝑥
𝑥−2(. ), 

 And inverse operator 

𝐿−1(. ) = 𝑥2 ∫ 𝑥−3
𝑥

0

∫ ∫ 𝑥−1
𝑥

0

𝑥

0

∫ 𝑥−2
𝑥

0

(. )𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥. 

on both sides of (45), and using the initial conditions at x = 0, yields 

𝑦(𝑥) = 𝐿−1(72 − 𝑥8) + 𝐿−1(𝑦2),                                                                                          (46) 

Substituting the decomposition series  yn(x)  for y(x) into (46) gives 

∑ 𝑦𝑛(𝑥)

∞

𝑛=0

= 𝐿−1(72 − 𝑥8) + 𝐿−1(𝑦2),                                                                                 (47) 



International Journal of Applied Science and Mathematical Theory ISSN 2489-009X Vol. 4 No. 3 2018 

www.iiardpub.org 

  

 

IIARD – International Institute of Academic Research and Development 
 

Page 7 

𝑦0 = 𝐿−1(72 − 𝑥8), 

𝑦𝑛+1 = −𝐿−1(𝐴𝑛) , 𝑛 ≥ 0.                                                                                               (48) 

𝐴0 = 𝑦0
2 , 

𝐴1 = 2𝑦0𝑦1, 
𝐴2 = 𝑦1

2 + 2𝑦0𝑦2  ,                                                                                                                    (49) 
… 

Using (49), the first several calculated solution components are 

𝑦0 = 𝑥4 −
1

14520
𝑥12  , 

𝑦1 =
1

14520
𝑥12 −

1

943509600
𝑥20 +

1

111890223244800
𝑥28, 

𝑦2 =
1

943509600
𝑥20 −

53

2423542235482368
𝑥28 + ⋯ 

𝑦3 =
1567

121177111774118400
𝑥28 − ⋯  

We note that: 

−
1

14520
𝑥12 +

1

14520
𝑥12 = 0 

−
1

943509600
𝑥20 +

1

943509600
𝑥20 = 0 

1

111890223244800
𝑥28 −

53

2423542235482368
𝑥28

1567

121177111774118400
𝑥28 = 0 

Other components can be evaluated in a similar manner. Which gives the exact solution 

𝑦(𝑥) =  𝑥4                                                                                                                                   (50) 

 

Example 2. We consider the non-linear initial value problem: 

𝑦(4) +
4

𝑥
𝑦′′′ − 8(15 − 129𝑥4 + 49𝑥8 + 𝑥12)𝑒−4𝑦 = 0                                                  (51) 

𝑦(0) = 0  ,   𝑦′(0) = 0 , 𝑦′′(0) = 0 ,    𝑦′′′(0) = 0 

with exact solution =  𝑙𝑛(1 + 𝑥4) 

Eq. (51) can be written as 

𝐿𝑦 = 8(15 − 129𝑥4 + 49𝑥8 + 𝑥12)𝑒−4𝑦                                                                            (52) 
Where differential operator    

𝐿(. ) = 𝑥−4
𝑑

𝑑𝑥
𝑥3

𝑑2

𝑑𝑥2
𝑥3

𝑑

𝑑𝑥
𝑥−2(. ) 

And inverse operator 

𝐿−1(. ) = 𝑥2 ∫ 𝑥−3 ∫ ∫ 𝑥−3
𝑥

0

𝑥

0

𝑥

0

∫ 𝑥4
𝑥

0

(. )𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥 

on both sides of (52), and using the initial conditions at x = 0, yields 

𝑦(𝑥) = 𝐿−1(8(15 − 129𝑥4 + 49𝑥8 + 𝑥12)𝑒−4𝑦)                                                             (53) 

Substituting the decomposition series  yn(x)  for y(x) into (53) gives 

∑ 𝑦𝑛(𝑥)

∞

𝑛=0

= 𝐿−1(8(15 − 129𝑥4 + 49𝑥8 + 𝑥12)𝑒−4𝑦) ,                                                  (54) 

𝑦0 = 0 

𝑦𝑛+1 = 𝐿−1(8(15 − 129𝑥4 + 49𝑥8 + 𝑥12)𝐴𝑛), 𝑛 ≥ 0                                            (55) 

𝐴0 = 𝑒−4𝑦0  , 
𝐴1 = −4𝑦1𝑒−4𝑦0 , 
𝐴2 = −4𝑦2𝑒−4𝑦0 + 8𝑦1

2𝑒−4𝑦0𝑦1
2 ,       
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𝐴3 = −4𝑦3𝑒−4𝑦0 + 16𝑦1𝑦2𝑒−4𝑦0 −
32

3
𝑦1

3𝑒−4𝑦0  ,                                                              (56) 

… 

Using (56), the first several calculated solution components are 

𝑦0 = 0 

𝑦1 = 𝑥4 +
43

126
𝑥8 +

49

2145
𝑥12 +

1

7140
𝑥16 

𝑦2 = −
10

63
𝑥8 +

11266

45045
𝑥12  −

560759

10720710
𝑥16 + ⋯ 

𝑦3       =
544

9009
𝑥12 −

25972

153153
𝑥16 + ⋯ 

𝑦4 = −
10096

357357
𝑥16 + ⋯ 

𝑦(𝑥) = 𝑥4 −
1

2
𝑥8 +

1

3
𝑥12 −

1

4
𝑥16 +  …                                                                               (57) 

That converges to the exact solution =  𝑙𝑛(1 + 𝑥4) by Taylor series. 

 

Example 3. We assume the linear initial value problem: 

𝑦(6) +
1

𝑥
𝑦(5) = 2 − 𝑥6 + 6! 𝑦 ,                                                                                                (58) 

𝑦(0) = 0  , 𝑦′(0) = 0  , 𝑦′′(0) = 0 , 𝑦′′′(0) = 0  ,   𝑦(4)(0) = 0 ,   𝑦(5)(0) = 0. 

With exact solution = 
1

6!
𝑥6. 

Eq. (58) can be written as 

𝐿𝑦 = 3 − 𝑥6 + 6! 𝑦 ,                                                                                                                  (59) 
Where differential operator   

𝐿(. ) = 𝑥−1
𝑑

𝑑𝑥
𝑥−1

𝑑3

𝑑𝑥3
𝑥5

𝑑2

𝑑𝑥2
𝑥−3(. ), 

    And inverse operator  

𝐿−1(. ) = 𝑥3 ∫ ∫ 𝑥−5
𝑥

0

𝑥

0

∫ ∫ ∫ 𝑥
𝑥

0

𝑥

0

𝑥

0

∫ 𝑥
𝑥

0

(. )𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥𝑑𝑥. 

On both sides of (59), and using the initial conditions at 𝑥 = 0, yields 

𝑦(𝑥) = 𝐿−1(2 − 𝑥6) + 𝐿−1(6! 𝑦).                                                                                          (60) 

Substituting the decomposition series  yn(x)  for  𝑦(𝑥) into (60) gives 

∑ 𝑦𝑛(𝑥)

∞

𝑛=0

= 𝐿−1(2 − 𝑥6) + 𝐿−1(6! 𝑦),                                                                                 (61) 

𝑦0 = 𝐿−1(2 − 𝑥6), 
𝑦𝑛+1 = 𝐿−1(6! 𝐴𝑛) , 𝑛 ≥ 0.                                                                                              (62) 
Using (62), the first several calculated solution components are 

𝑦0 =
1

720
𝑥6 −

1

760320
𝑥12, 

𝑦1 = 𝐿−1(6! 𝑦0) =
1

760320
𝑥12 −

1

15200317440
𝑥18, 

𝑦2 = 𝐿−1(6! 𝑦1) =
1

15200317440
𝑥18 −

1

2153580974899200
𝑥24, 

𝑦3 = 𝐿−1(6! 𝑦2) =
1

2153580974899200
𝑥24 −

1

1329892245105603379200
𝑥30, 

… 
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Other components can be evaluated by same the manner. We note that the components appear 

with opposite signs from term to another. Canceling these terms together from series solution 

gives the exact solution 

𝑦(𝑥) =
1

6!
𝑥5.                                                                                                                               (63) 

 

6. Conclusion 

In this work, we have used the adjusted Adomian decomposition strategy for solving singular 

initial value problems of higher odd-order. We have presented a two new differential operator 

for solving this problems. We have demonstrated that the strategy is quick convergent for 

solving IVPs. The given examples illustrate the advantages of using the proposed method in 

this work for these kinds of equations. Finally the adjusted Adomian decomposition strategy is 

effective and efficient in finding the analytical solutions for a wide class of initial value 

problems. 
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